If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-52x+160=0
a = 3; b = -52; c = +160;
Δ = b2-4ac
Δ = -522-4·3·160
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-52)-28}{2*3}=\frac{24}{6} =4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-52)+28}{2*3}=\frac{80}{6} =13+1/3 $
| 9x-4(2x-1)=170 | | 9=3x-1-x | | 180=7x-3(-6x÷15) | | 8-m/5=12 | | -2=7/8+b | | -9+2a=3a | | 5a+25-10a-19=22 | | 0,84=(x-40)/10 | | n+29=13 | | y^2-40y-100=0 | | 1/2x+2/4x=13 | | -3b+2b=24-9b | | 9/3=3/x | | X=7/9x+4 | | (82/5)g=12 | | -3b-2b=24-9b | | 2(3n-2)+20=40 | | -3b+2b=24 | | 4/2=x/1 | | -0,52=(x-40)/10 | | 4(a-1)=0.5(8a-8 | | 7x-3(x-6)=2(x-4)+6 | | -18x+-1=15x+-13 | | -88+z=-88 | | 18x+-1=15x+-13 | | 11x+11=-7x | | 7(v-9)=-4v+14 | | 0,01=(x-240)/80 | | -8.94=5.25s-2.01 | | 1/3xx9=16 | | -1,28=(x-240)/80 | | 5/11=25/x |